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The spatial interactions between a fundamental instability wave and its subharmonics 
in a turbulent round jet are studied for ‘natural’ or forced exit conditions. 
Time-averaging and conditional-averaging techniques are used to split each flow 
component into a mean one, a random turbulence one and several wave-like 
coherent-structure components at fundamental and subharmonic frequencies. The 
energy equations for the flow components are derived and integrated across the jet. 
Shape assumptions regarding the radial distributions of each flow component are used 
to obtain a set of nonlinear ordinary differential equations representing the energy 
interactions between the coherent components, while interacting with the mean flow 
and with the background turbulence. Vortex pairing is viewed here as occurring when 
the subharmonic absorbs energy from the fundamental and from the mean flow and 
exceeds the fundamental’s level to become the dominant instability component. A t  
the proper initial phase difference between the subharmonic and fundamental only 
the first subharmonic was found to amplify if the fundamental Strouhal number based 
on diameter is in the range of 0.6-1.0. For higher Strouhal numbers, several 
subharmonics can amplify. The pairing location moves closer to the nozzle exit 
with increasing excitation Strouhal number. The time-averaged coherent Reynolds 
stresses exhibit regions of sign change, indicating a reversal in the direction of energy 
transfer between the mean flow and the coherent components. 

1. Introduction 
The existence of large-scale coherent structures in shear flows has now been 

confirmed by an overwhelming number of obsefvations. The earlier work of Brown 
& Roshko (1974), Crow & Champagne (1971), Winant & Browand (1974) and 
Browand & Weidman (1976) demonstrated that the developing flow in both 
axisymmetric jets and two-dimensional shear layers is dominated by large-scale 
coherent structures. These structures develop from the exit boundary layer and merge 
with their neighbours as the shear layer develops downstream. The importance of 
the subharmonic in vortex pairing has been indicated by Kelly (1967)’ Corcos & 
Sherman (1976) and Riley & Metcalfe (1980), among others. Kibens (1980) excited 
a circular jet with an azimuthally coherent perturbation at the most-amplified 
frequency of the sheer-layer instability. The perturbation organized the large-scale 
structures in the shear layer into a sequence of successive vortex-pairing stages at  
fixed streamwise locations. After each pairing, the peak frequency of the spectrum 
was found to be halved, indicating the amplification of the subharmonic. Ho & Huang 
(1982) have also shown that for a mixing layer, pairing of vortices is the product of 
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the subharmonic instability. The pairing location was found to be at the downstream 
location where the subharmonic saturates. Hence Ho & Huang viewed the subharmonic 
as a catalyst for vortex pairing. A study of the interaction between an imposed 
excitation wave and its subharmonics can thus clarify many important concepts 
regarding vortex pairing. 

By viewing the flow as spatially periodic and evolving in time, direct computations 
of vortex pairing in mixing layers (e.g. Acton 1976; Patnaik, Sherman & Corcos 1976; 
Knight 1979; Riley & Metcalfe 1980; Corcos & Lin 1984) obtained encouraging 
results. Numerical simulations of the coalescence of two vortices showed dependency 
on the phase difference between the fundamental and its subharmonic. The numerical 
results can be compared with flow visualizations and seem to yield a realistic 
modelling of the roll-up of the shear layer and vortex pairing in the two-dimensional 
cctse. But, as pointed out by Ho & Huerre (1984), the extraction of detailed 
information regarding the intrinsic scales of motion is more involved. 

Coherent structures in mixing layers can be viewed as a composition of interacting 
instability waves that propagate and amplify in the downstream direction. Linear- 
stability analysis has been shown to provide some satisfactory results in the initial 
roll-up of vortices. Freymuth (1966) and Michalke (1965) have shown that the 
most-amplified frequency scales with the momentum thickness and the jet exit 
velocity as in experiment. Crow & Champagne (1971) have also shown that linear- 
stability theory can predict some of the observed features of the preferred mode of 
an axisymmetric jet. Crighton & Gaster (1976) took the divergence of the jet into 
consideration and calculated the preferred mode of the velocity profile two diameters 
downstream of the nozzle. Kelly's (1967) temporal-instability analysis of a spatially 
periodic mixing layer indicated that the appearance of a frequency half that of the 
dominant oscillation is due to a secondary instability associated with the periodicity 
of the flow. Because of the finite-amplitude growth of the fundamental oscillation, 
energy is transferred from the fundamental to the subharmonic. As a result, the 
amplification of the subharmonic can exceed that of the most-unstable disturbances 
associated with the mean flow. These investigations suggest that vortex pairing can 
be viewed as the interaction between a fundamental instability wave and its 
subharmonic. Consequently, pairing is viewed here as occurring when the subharmonic 
absorbs energy from the fundamental and from the mean flow and amplifies to exceed 
the level of the fundamental and becomes the dominant instability component. 

In  the present work the interactions between a fundamental wave-like coherent- 
structure component and its subharmonics are studied for the case of a low-speed 
turbulent round jet. The coherent structures are idealized as composed of a finite 
number of instability waves at discrete frequencies. These frequencies are related to 
each other through the fundamental-subharmonic frequency relations, i.e. the 
frequencies considered are given by f/2", where f is the frequency of a fundamental 
component and n = 0, 1,2,3, . . . . In  the real situation other frequency components 
exist and the vortex-pairing pattern can take on different variations depending on 
the initial conditions. Also, several vortex rings can coalesce together, depending on 
the excitation conditions. In  addition, the amplified first subharmonic 2 can interact 
with the fundamental to form the vcomponent, and several other sum and difference 
frequency components can be generated. However, the problem is simplified here by 
considering only the pairing between the fundamental and subharmonic components. 
This simplification is justified by several experimental observations such as those of 
Kibens (1980, 1981), Zaman & Hussain (1980), Ho & Huang (1982), Baltas & Morris 
(1984) and Arbey & Ffowcs-Williams (1984), which show that the forced fundamental 
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and subharmonic components are the dominant frequency components in the initial 
region of the jet. 

Weakly nonlinear theories may be used to study the interaction between the 
fundamental and subharmonic. But, as pointed out by Huerre (1980), in using weakly 
nonlinear spatial theories, it  is difficult to relate the small-growth-rate assumption 
to the analysis of vortex pairing when the underlying medium is slowly diverging. 
The energy-conservation equations, coupled with radial shape assumptions, are used 
here to derive a set of nonlinear ordinary differential equations describing the energy 
exchanges between the different flow components. Because of the shape assumptions 
involved and the finite number of coherent components considered, the energy-integral 
technique is only approximate. However, it  allows study of the strongly nonlinear 
interactions, whereas weakly nonlinear theories are necessarily restricted to small 
amplii uJ,es. 

2. Formulations 

2.1. h e r n i n g  equations 
Each flow quantity g(x, t )  is split into a mean-flow quantity g(x), a random fine-grained 
turbulence g’(x, t )  and a set of wave-like coherent-structure components @(x, t ) .  The 
coherent-structure components are assumed to consist of a single fundamental 
component, of frequency f, and a series of subharmonic components Qf,, of 
frequencies f,. The nth subharmonic frequency f, is related to the fundamental fre- 
quencyfthrough the relationf,, =f/(2)n. Thus, following Reynolds & Humin  (1972) 
and Stuart (1965), each flow quantity can be written in the form: 

m 

n-i 
g(x, t )  = B(x) + g’(x, t )  +Qj(x, t )  + x @f&, t ) ,  

where m is the number of subharmonics considered. The conditional average, which 
is here the phase average with respect to a given frequency, and the usual time 
average are used to separate the flow into its components. The time average of a 
random quantity is zero. Each coherent component is assumed to be periodic in time, 
i.e. - exp (2nif, t ) .  Therefore the time average of the full quantity produces the mean 
component, while phaae-averaging produces the coherent component plus the mean 
component. The conditional average with repect to a given frequency will be denoted 
by ( > and the time-average by (-). 

The continuity and Naviedtokes equations are written in cylindrical coordinates 
for the full velocity components for imcompressible flows. Time-averaging the full 
continuity equation produces the mean-flow continuity equation. Successive phase- 
averaging of the full continuity equation with respect to each frequency produces the 
continuity equation for each coherent component. The background fine-grained 
turbulence continuity equation is obtained by subtracting the mean-flow continuity 
equation and the coherent-structures continuity equations from the full one. The 
momentum equations are similarly obtained. The process of using phatw-averaging 
to separate the governing equations haa been discussed in detail by Humin  & 
Reynolds (1970), Kendall (1970) and Mankbadi & Liu (1981). The kinetic-energy 
equation for each flow component is obtained by multiplying the full momentum 
equations by the ‘corresponding velocity components and time-averaging. 

The resulting kinetic-energy equations are simplified by applying the boundary- 
layer-type approximations (Hinze 1975) to the mean quantities. These approximations 
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imply that the radial mean-flow velocity V is considered small with respect to the 
longitudinal one U .  The longitudinal gradient of mean quantities is negligible with 
respect to the corresponding radial gradient. The axisymmetry of the mean flow gives 
W = a(-)/a$ = 0. However, no such approximations can be stated regarding the 
fluctuating quantities prior to averaging. Viscous dissipations of the mean flow and 
coherent structures are neglected with respect to that of the random turbulence. 
Triple correlations of random turbulence quantities are neglected, but triple cor- 
relations of coherent-structure quantities are kept. After simplification, the energy 
equations are integrated across the jet, and the diffusion terms vanish. After some 
manipulations utilizing the continuity equations, the energy equations for the mean 
flow, coherent-structure components and random turbulence reduce to 

mean flow 

V r d r  = -Joa-ufwf = r r d r  au 

- au ~ ~ , ~ v ~ , ~ - r d r -  ar 
n-1 

fundamental 

first subharmonic 

nth subharmonic 

rdr  (n = 2, ..., m),  ( I d )  
8x5 

- Joa (ct cj)s, n+l 

background turbulence 
co 

JOw $s,nrdr+Jm 0 gfrdr-J 0 Erdr. 
n-1 

xd = (2, r,  9) are the coordinates in the axial, radial and azimuthal directions 
respectively, and ui = (u, w, w) = (ul, u2, u3) are the corresponding velocity com- 
ponents. U ,  Cf, CS and u' are the velocities of the mean flow, the coherent fundamental 
and subharmonic components, and the background turbulence respectively. Cl/ax, is 
defined as 

a a a i a  
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All physical parameters are rendered dimensionless in the following manner. Velocities 
are normalized by the jet exit velocity U,, lengths are normalized by the nozzle radius 
R, and the pressure is normalized by p U2,, where p is the fluid mean density. Mean-flow 
quantities are denoted by capital letters, coherent components by a tilde (“) and the 
random turbulence by a prime ( ’ ). Q and q are respectively the coherent-structure 
and random-turbulence kinetic energies, defined as 

Q = +(G2+$++2), q = ;(U’2+v’2+W’2); 

and 6 is the viscous dissipation of the random fine-grained turbulence. q5f or q5s, , are 
the coherent-structurerandom-turbulence interactions, defined as : 

where ft,, is the wave-induced stress tensor of the coherent component of frequency 
f, Et,, is the corresponding strain tensor of the coherent component of frequency f ;  
q5s, , is similarly defined. Terms in (1) that consist of coherent stresses ( -GtG,)s,n 
multiplied by coherent strains aG,, s, ,-Jax, represent the wave-wave interaction 
between the f,, and the f,-l components. In  obtaining such terms, one should note 
that, because of the assumed periodicity, the time average of triple correlations of 
coherent components of frequenciesf,, fi andf, is zero unlessf, &fi = &fp. Thus for 
the frequencies considered here (f, = f/(2),) the time average of the direct interactions 
between thef, component and the other frequency components is zero except for its 
interactions with f,+l and f,-l. 

2.2. S h p e  assumptions 
The above system of equations represents the energy interections between the flow 
components. To obtain the development of each flow component along the jet several 
closure assumptions must be made regarding the ‘radial shape’ distribution of the 
mean flow, the random turbulence and the coherent structures. These assumptions 
coupled with (1) provide the fundamental basis for determining the amplitude 
equations for the nonlinear interactions among the different scales of motion. The 
mean flow is characterized here by its momentum thickness 8(x). The coherent- 
structure components and the random-turbulence component are characterized by 
their respective energy content across a slice of the jet. The shape assumptions used 
here follow Mankbadi & Liu (1981,1984), but are extended to account for the presence 
of several interacting coherent components. The mean-flow shape is the two-stage 
hyperbolic-tangent profile proposed by Michalke (1971), which describes the adjust- 
ment from a top-hat profile at the nozzle exit to a fully developed jet profile 
downstream : 

1 (1 < r < I-+&), 
_ -  U ) (2<0.08), 

(2) 
uc - (t (1 + t a n h k )  28 (1-+& < r )  

r-l- r 
= 1. (1 + tanh - uc 2 48 

(; 3 0.08). 

Moore (1977) has shown that this profile models the circular jet flow in the 
potential-core region quite well, and i t  has been used by Crighton & Gaster (1976), 
Morris (1976) and Plaschko (1979). U, is the mean velocity at the centreline, S is the 
shear-layer thickness and 0 is the boundary-layer momentum thickness. The mean 
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flow is defined here as the time average of the full flow velocity. Thus it is the average 
over many finite-amplitude vortex structures, and therefore the mean flow is 
dependent on both the coherent structure and the random turbulence. This dependency 
is accounted for here through the dependency of the mean flow on the momentum 
thickness. The momentum thickness is in turn to be determined through the nonlinear 
interactions between the different flow components, thus coupling the mean flow to 
the development of both the coherent and turbulent components. 

Guided by several experimental observations (e.g . Bradshaw , Ferris & Johnson 
1964; KO k Davies 1971 ; Davies, Fisher & Barrett 1963), the background random 
turbulence is modelled as 

a = a ,E(z )G(e )  exp(-q2), e = a,$/& (3) 

where q2 = ( r -  1)2/BC,; atl and C,  are constants given by a,, = 1.0, a22 = a,, = 0.5, 
a,, = 0.33, a13 = a2, = 0, C, = 20 and a2 = 1.5. G(0)  is a normalization function such 
that E(z)  is the random-turbulence energy across the jet. The experimental data are 
used to provide only the radial shape of the turbulent Reynolds stresses and their 
ratios to each other. Both the 'shape' and the ratio are considered to be insensitive 
to the presence of coherent components in the measured data. The magnitude and 
the actual local distribution of the turbulent Reynolds stresses, as well as the viscous 
dissipation 2, are determined through E(x)  and O(z), which are both obtained from 
the nonlinear analysis, thus coupling ucul and E to the mean flow and to the 
coherent-structure components. 

Shape assumptions for the coherent structure follow Stuart (1958, 1960), KO, 
Kubota & Lees (1970) and Liu (1971, 1974) in the form 

[ i ] f = ' A ( x ) [  $ (O, r ,w)  ] exp(iJ:a,,r([)d[-iwt+i/30 ) +c.c. (4a) 

- 

4,(0, r ,  w )  

E(z )  P,(& r ,  w )  f 

for the fundamental, and [ '1 [ 4 1 0 , r y w n )  ] 
= B n ( 4  w, r,  w,) exp(iJox a,,n([)d[-iwnt +c.c. (4b) ) 

rij s, n E ( z )  ttj(6, r ,  W n )  s, n 

for the subharmonic, where C.C. denotes the complex conjugate, a, is the real part 
of the complex wavenumber a corresponding to the frequency w = 2xf, where f is 
the fundamental frequency (in Hz), and w, = w / ( 2 ) ,  is the nth subharmonic 
frequency. The radial shape functions denoted by ( - )  are given by the inviscid linear 
locally parallel stability theory, and their implicit dependence upon x results from 
the dependence of the local linear stability theory upon the momentum thickness B(z). 
A ( z )  and B,(x) are the fundamental and subharmonic complex amplitudes, to be 
determined from the nonlinear interaction problem. To a first approximation, A ( z )  
and Bn(z)  are taken proportional to 

/ rx \ 

as in the linear theory. Po is a prescribed initial phase difference between the 
fundamental and its subharmonic component. Po is introduced here since the work 
of Patnaik et al. (1976), Riley & Metcalfe (1980) and Zhang, Ho & Monkewitz (1984) 
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showed that the interaction between the fundamental and subharmonic instabilities 
is dependent on the initial phase difference. In general, is the initial phase difference 
between the nth and the (n-1)th subharmonic, and can be varied depending on 
Strouhal number or the order of the subharmonic. A dynamic equation for the 
wave-induced stresses ? is obtained as in Mankbadi & Liu (1981) by considering the 
dynamic equation for utu; and subtracting the time-averaged one from the phase- 
averaged one. The resulting equations for ?,, are linearized, producing a set of six 
simultaneous linear equations to determine the radial distribution of ti, across the 
jet. 4, are obtained from the local linear-stability theory and serve t~ advection 
velocities in the tij equations. The distribution of energy transfer between the 
coherent structure and the random turbulence across the jet is then obtained from 

$2 

?,, 4, = 144 l2 E ( 4  +,,&,, 
for each coherent-structure frequency component. 

The assumption of using the linear locally parallel stability theory to provide the 
eigenfunctions as the radial shapes of the coherent components arises from the 
linearized momentum equation of each coherent component. When this equation is 
decoupled from the wave-induced stresses it reduces to the linear instability equation. 
Some arguments and comparisons with observations have been presented in Mankbadi 
& Liu (1981) for the case of the development of a single coherent component. The 
validity of this assumption has also been addressed in greater depth by Strange & 
Crighton (1983). Based on comparisons with measurements, they concluded that, 
although the amplification rates of the coherent components are not well predicted 
by the linear theory, the transversal distribution of the coherent quantities is well 
predicted by the linear theory. The same conclusion has also been reached by Zhang 
et al. (1984) for a mixing layer forced by fundamental and subharmonics. In  addition, 
the eigenfunctions calculated here compared well to the measured velocities and 
pressure of coherent components obtained by Favre-Marinet & Binder (1979), Ahuja, 
Lepicovsky & Burrin (1982) and Strange & Crighton (1983). 

Because of the non-parallel-flow effects which Crighton & Gaster (1976) and 
Plaschko (1979), among others, have shown to be significant, the eigenfunctions vary 
considerably along the jet. To account for this variation, the linear-stability 
equations are solved at each axial location to provide the local eigenfunctions along 
the jet corresponding to a given frequency. The solution of the linear-stability 
problem follows Michalke’s (1971) method for the amplified solution. Beyond the 
neutral point the damped solution is obtained by taking the problem to the complex-r 
plane and following a rectangular contour of integration as in Morns (1976). The 
eigenfunctions 4, and @ are normalized in such a manner that I A ( z )  Is and I B, l 2  
become the kinetic energies for the fundamental and subharmonic components 
respectively. The nonlinear interactions between the several flow components thus 
control the levels of the coherent structures and the random turbulence through I A 1 2 ,  
IBI2 and E, and control the radial shape distributions of all flow components 

2.3. The nonlinear interaction 
Upon substituting the shape assumptions discussed in $2.2 into the energy equations 
( l ) ,  the following set of ordinary differential equations for 8, IA 12, I BnI2 and E is 
obtained : 

mean flow 

through 8. 
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fundamental 

first subharmonic 

nth subharmonic 

random turbulence 

where St = f d / U ,  is the fundamental Strouhal number. f is the frequency, d is the 
nozzle-exit diameter, U ,  is the exit velocity. The nth subharmonic Strouhal number 
S, is defined as S, = St/(2),. The initial conditions for ( 5 )  are O(0) = Bo, 
I A(0)  1, = I A I;, I B,(O) 1, = 1 B, I;, and E(0)  = E,. 

Because of the shape assumptions discussed in $2.2, integrals involving only the 
mean-flow velocity profile and mean fine-grained turbulence stresses are functions of 
the local momentum thickness alone, while integrals involving the large-scale 
structure depend not only on 0 but also on St and the order of the subharmonic. The 
integrals I,, I,, 13, Ik,, Iwt and I, are the same as in Mankbadi & Liu (1981) for the 
development of a single monochromatic coherent component. The mean-flow energy- 
advection integral is defined as 

rh  

I,(e) = J - -  U3r dr, 
0 

where h is the outer edge of the shear layer. Note that (5a)  is actually an equation 
for do/& with dI,(B)/dB < 0. The large-scale-structure energy-advection integral is 

I , (e ,S t )  = JOh U(1~21~+)4)~) rd r  

and the fine-grained-turbulence energy-advection integral is 
h 

0 
13(e) = G(0)J  Uexp(-y2)rdr. 

The production integrals of the fine-grained turbulence and large-scale structure are 
respectively 
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where ( )* denotes the complex conjugate of ( ). The large-scale-structure’turbulence- 
energy-exchange integral is 

1 P* 8 
I,(O,flt) = -2 Re eE(icL.. i i)+P:,8’+~+r~~(ida+a’) rdr,  1.” I T 

where ( )’ denotes differentiation with respect to r .  The he-grained-turbulence 
dissipation integral is 

h 

I,(e) = 5 @(8) exp ( -:qe) r dr. 
a38 0 

Iww(O, 1!3,,-~, Sn) represents the interactions between fundamental and subharmonic, 
or generally between the (n-1)th subharmonic and the nth subharmonic, and is 
defined as 

i,, appears with opposite signs in (5b) and (5c) or in (5c) and ( 5 4  and represents 
the energy cascade between the fundamental and the subsequent subharmonics. The 
real and imaginary parts of I,, are shown in figure 1. The effective phase difference 
between the fundamental and subharmonic is thus given by 

a o + J 2  0 ([CI1r,n-l(5)-2&r,n(5)1d5, 

as in (6). This phase difference is calculated here based on the linear locally parallel 
stability theory, which provides a,,,(() and c~.,,~-~([) along the jet for a given 
frequency. This assumption is supported by Drubka’s (1981) measurements of the 
phase angle of each coherent component along the jet. His measurements indicated 
that the phase angle varies linearly along the jet. This linear behaviour of the phase 
angle has also been observed by Laufer I% Yen (1983). Hence the phase difference can 
be given approximately by the linear theory, although the amplitudes of the two 
waves are given by the nonlinear theory. 

In  (5a-e) the left-hand sides are the energy advections of each flow component by 
the mean flow. The first term on the right-hand side of (5a) appears with an opposite 
sign to the first term in (5e) and is the random-turbulence energy production by the 
mean flow. I&,(8) is a positive decreasing function of 8, indicating one direction of 
energy transfer from the mean flow to the random turbulence. The second and 
subsequent terms in (5a)  appear with opposite signs to the first terms in (5M) and 
represent the energy transfer from the mean flow to the fundamental and the 
subharmonics respectively. For the amplified linear-stability solutions rRs is positive, 
while for the damped solution rRs is negative, indicating damping of coherent-structure 
components by the return of their energies to the mean flow at some downstream 
stations. With dl,(8)/d8 < 0 (5a)  indicates that the shear layer grows as a result of 
the productions of the coherent and random components. Equations ( 5 W )  indicate 
that the coherent-structure component grows by absorbing energy from the mean 
flow and decays through random-turbulence dissipation. The wave-wave interaction 
terms in ( 5 W )  can act as production or damping terms, depending on the order of 
the subharmonic considered and the choice of the initial phase difference Po. In  (5b) 
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- 5  

- 10 

FIQURE 1. Wave-wave interaction integral I,,, for several 
Strouhal numbers: (a) real part; ( b )  imaginary part. 

for the fundamental of frequency f the interactions with higher harmonics, i.e. 
2f,4f, ... , are neglected for the sake of simplyihg the problem. For the case of 
excitation at high Strouhal numbers, the harmonics of the forced component will be 
in the stable region. Therefore they will be damped and can be neglected. This is not 
true for low or moderate Strouhal numbers, where the harmonics can amplify and 
become relevant. However, the observations of Baltas & Morris (1984) and Zeman 
& Hussain (1980) have indicated that for this low to moderate Strouhal number range 
the harmonics of the forced component are much smaller than the first subharmonic 
of the fundamental. Therefore the present analysis is restricted to the interaction of 
the fundamental with its subharmonic and excludes the interaction with the higher 
harmonic. 

Equation (5e) indicates that the random turbulence gains energy from the mean 
flow and from the coherent-structure components and loses energy through viscous 
dissipation. 

With the shape assumptions discussed in $2.2, the integrals involved in (5 )  can be 
calculated for a given Strouhal number as a function of 8. Once the initial conditions 
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8,, I A I:, I B, 1: and Eo are fixed, the development of @), I A ( z )  12, 1 B,(s) I 2  and E(s)  
along the jet can be obtained. By taking the initial levels of the fundamental and 
its subharmonics to be weak enough to match the corresponding levels in the 
‘natural ’ unforced jet, one can follow the development of the several flow components 
along a ‘natural’ jet. By taking the initial level of the fundamental so as to match 
the condition of forcing at a single frequency, while keeping the other initial 
conditions as in the unforced case, one can follow the development of the flow 
components under forced conditions. 

3. The role of Strouhal number on vortex pairing 
The solution of the nonlinear interaction problem (5) is subject to the initial 

conditions of O,, E,, I A I:, I B, 1: as well as the Strouhal number, which controls the 
interaction integrals. 8, is determined from the exit velocity profile, which is a 
function of whether the exit boundary layer is laminar or turbulent. E,, the initial 
random-turbulence energy density, can be related to the exit turbulence-velocity 
components through (3). I A I:, the initial energy density of the forced or natural 
fundamental component of the Strouhalnumber St, can be related to the corresponding 
exit velocity through (4a). Similarly, the initial energy density of the subharmonic 
components IB,l:, n = 1,2, ..., m, are related to the corresponding exit velocities 
through (4b). The experimental observations of Laufer & Zhang (1983), Husain & 
Hussain (1983), Zaman & Hussain (1980) and Kibens (1980) show the initial 
momentum thickness to be about (0.0024.005) d for laminar exit boundary layers 
and about (0.00&0.007) d for turbulent exit boundary layers. The exit centreline 
longitudinal random-turbulence velocity component is about 0.143.5 yo of U,, and the 
unexcited coherent-structure exit centreline longitudinal velocity components are 
about 0.01-0.1 yo or U,. I A It depends on the excitation level. From such data one 
can determine do, E,, I A 1: and I B, 1:. In order to examine the role of Strouhal number 
on vortex pairing, (5) is solved under excitation conditions at several Strouhal numbers 
that raises the initial level of the corresponding I A I;, while keeping the other initial 
conditions as in the unexcited case. For a given set of initial conditions and Strouhal 
number, (6) shows that the fundamental-subharmonic interaction integral is also a 
function of the initial phase difference 1, between the fundamental and its first 
subharmonic or that between the nth and the (n- 1)th subharmonics. The develop- 
ment of the fundamental and its subharmonics will consequently be dependent on 
the choice of these parameters, as the observation of Zhang et al. (1984) for a mixing 
layer has indicated. The natural uncontrolled initial subharmonic components can 
exist with any phaae differences with respect to the fundamental. The forced funda- 
mental will act as an amplifier to its first subharmonic, and the degree of amplification 
will depend on Po, as will be discussed in 95. Since vortex pairing is viewed here as 
the amplification of the subharmonic Po will be taken as the value that produces 
maximum subharmonic amplification at a given excitation Strouhal number. For all 
of the Strouhal-number range considered Po x 0 was found to produce maximum 
initial subharmonic amplification very close to the jet exit, as in the two-dimensional 
case. However, the optimum Po for the maximum subharmonic’s peak energy down- 
stream was found to vary from $ at low Strouhal numbers to Po = 0 at high Strouhal 
numbers (95). Thus, for each Strouhal number considered, 1, is taken here as the value 
that produces maximum subharmonic amplification. 

The development of the forced fundamental component’and its subharmonics are 
shown in figure 2 (a*) for fundamental Strouhal numbers of 0.2, 0.4, 0.6, 0.8, 1 .O, 
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2.4 and 4.8 respectively. The presence of four subharmonics of the fundamental is 
considered in solving (5 ) .  The initial conditions for the solutions of (5) were fixed at 
Bo = 0.003d, u‘ = 0.3 % U, at the exit jet centreline. I B, 1: was fixed at for all 
subharmonics, which corresponds to exit velocities of about 0.1 % U,. I A 1: was fixed 
at which corresponds to exit velocities of about 0.03Ue. At St = 0.2 figure 2 (a)  
shows that the forced fundamental grows at a slow rate, its streamwise lifespan is 
considerably large, but no subharmonic can be detected. At St = 0.4 figure 2 (b) shows 
an increase in the growth rate of the forced fundamental, but its streamwise lifespan 
decreases with increasing Strouhal number. Only the first subharmonic is amplified, 
with a peak at x/d x 6, but its energy level is much less than that of the fundamental 
or the background turbulence. For the Strouhal number range 0.6-1.0 figures 2 (c-e) 
shown that the energy level of the first subharmonic is comparable to that of the 
fundamental, but the energy levels of the second, third and fourth subharmonics are 
still negligible and are therefore not shown in the figures. As (5b) indicates, the 
fundamental first grows as it absorbs energy from the mean flow, and subsequently 
decays by giving its energy to the background turbulence and to its first subharmonic. 
The subharmonic grows by absorbing energy from the fundamental and from the 
mean flow, and subsequently decays by dissipating its energy to the background 
turbulence. Figures 2(c-e) show that the locations of the fundamental’s and sub- 
harmonic’s peaks move closer to the nozzle exit with increasing excitation Strouhal 
number. Defining the location of vortex pairing is a subjective problem. Ho & Huang 
(1982) defined the pairing location being where the subharmonic saturates. Since 
pairing is viewed here as occurring when the subharmonic’s energy exceeds that of 
the fundamental, the location of pairing can alternatively be defined as where the 
subharmonic’s energy becomes equal to that of the fundamental. Whichever of the 
two definitions is adopted, one can infer from figure 2 that the location of pairing 
moves closer to the jet exit with increasing Strouhal number. This is consistent with 
Ho & Huang’s (1982) observations for a plane shear layer. 

Excitation at the Strouhal-number range 2.4-4.8 produces several subharmonics, 
as figures 2 (f, 9 )  indicate. At St = 2.4 figure 2 (f ) indicates that three vortex pairings 
can be formed, corresponding to the amplification of the first, second and third 
subharmonics of Strouhal numbers 1.2, 0.6 and 0.3 respectively. The forced funda- 
mental grows by absorbing energy from the mean flow, and subsequently, as it decays, 
it amplifies its first subharmonic. The first subharmonic grows by absorbing energy 
from the fundamental and from the mean flow, and subsequently, as it decays, it  
amplifies the next subharmonic. The next subharmonic behaves similarly. The 
location of the subharmonic’s peak coincides with the location where the fundamental 
is rapidly decaying. At  Strouhal number 4.8 figure 2 (g) shows similar behaviour, and 
four vortex pairings can be formed, corresponding to the appearance of the first, 
second, third and fourth subharmonics of Strouhal numbers 2.4, 1.2, 0.6 and 0.3 
respectively. For an exit momentum thickness of Bo = 0.003d, the Strouhal numbers 
based on do, St, = ft?,/U,, are 0.0072 and 0.144 for St = 2.4 and 4.8 respectively. 
Therefore the Strouhal-number range of figure 2 (f, g) is close to the natural shear- 
layer instability frequency. The calculated amplification of several subharmonics in 
figure 2 (f, 9 )  is in qualitative agreement with several observations, including those 
of Drubka (1981), Laufer & Zhang (1983) and Husain & Hussain (1983). The theory 
also shows that the location of the subharmonic’s peak coincides with the rapid decay 
of the fundamental, as in Ho & Huang’s (1982) observation for a plane shear layer. 
The calculated streamwise regions for which each frequency is the dominant 
component are also in qualitative agreement with the corresponding regions of Wlezien 
& Kibens’ (1984) measured passage frequency along the jet after each pairing. 
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FIGURE 3. Predicted development of the fundamental’s and first subharmonic’s centreline axial 
velocity components Cf and 4, respectively at St = 0.8, in comparison with Zaman BE Hussain’s 
(1980) measurements at St = 0.85. 

To present quantitative comparisons between theory and observation, (5 )  is solved 
for the same initial conditions as in Zaman & Hussain’s (1980) experiment. The 
predicted centreline streamwise evolutions of the fundamental and first subharmonic 
axial velocity components are shown in figure 3 for St = 0.8 in comparison with the 
observations at St = 0.85 for a laminar exit boundary layer. The excitation level is 
taken as in the observation where the forced centreline axial velocity component at 
the jet exit is 0.03Ue, which determines I A 1;. The observed exit momentum 
thickness is 6, = 0.003d. The measured exit centreline axial velocity components of 
the background turbulence and the subharmonic coherent structure are 0.3 % U, and 
0.1 % U, respectively, which determines Eo and I B,  1%. In figure 3 both theory and 
observations show that the fundamental is the dominant component close to the jet 
exit, and that it grows to a peak around x/d = 1.75, and decays at x/d x 4. The 
theory predicts the first subharmonic to amplify to about 17 % of U,, almost the same 
level aa in the observations. However, while the observations show the subharmonic 
to peak around x/d = 2.5, the predicted peak location is about x/d = 5. This can be 
attributed to the fact that at xld = 1 the observations show the ff component to 
amplify and to reach a non-negligible level at  x/d = 2. The amplification of this if 
component is due to a second interaction mechanism in which the f and the if 
components interact to form the f +i f component. This mechanism is not accounted 
for in the present model. The amplification of the i f component results in draining 
energy from the subharmonic and would cause its earlier saturation, as in the 
experiment. Comparing the calculated and measured growths of the subharmonic also 
shows that the calculated growth rate of the subharmonic is less than the observed 
one. This is attributed to the presence of the shear-layer mode of pairing in the 
experiment, which is not accounted for here. As will be discussed later, the presence 
of an initial shear-layer mode can cause further amplification in the subharmonic 
(8, = 0.4) of the fundamental forced component of St = 0.8. 

The predicted growth of the first subharmonic of S, = 0.3, 0.4 and 0.5 when the 
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FIGURE 4. Predicted development of the first subharmonic’s centreline axial velocity component 
4,, in comparison with Zaman & Hussain’s (1980) data; exit laminar boundary layer, excitation 
level 3 % : (a) St = 0.6; (b)  0.8 (theory), 0.85 (experiment); (c) 1.0. 

jet is excited at St = 0.6, 0.8 and 1 .O respectively is shown in figure 4 in comparison 
with Zaman & Hussain’s (1980) observed first subharmonic when the jet is excited at 
St = 0.6,0.85 and 1.0. The initial first-subharmonic level is taken so aa to match the 
initial measured level in each case. The other initial conditions are kept as those of 
figure 3. Figure 4 shows that the theory predicts the same level of the subharmonic’s 
amplification, but the predicted location of the subharmonic peak is farther down- 
stream. In the case of a turbulent exit boundary layer the predicted growth of the 
first subharmonic is shown in figure 5 in comparison with the corresponding 
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FIGURE 5. Predicted development of the first subharmonic’s centreline axial velocity component 
Gs, in comparison with Zaman & Hussain’s (1980) data; exit turbulent boundary layer, excitation 
level 1 % : (a) St = 0.40 (theory), 0.44 (experiment); ( b )  0.8 (theory and experiment); (c) 1.0 (theory), 
1.13 (experiment). 

observations of Zaman & Hussain (1980) for several excitation Strouhal numbers. The 
initial conditions are taken as in the experiment: an excitation level of 1 yo U,, 
Bo = 0.0025d, u’ = 0.3 % U, and the subharmonic’s initial axial velocity component 
equals 0.01 % U,. Figures 4 and 5 show that the agreement between theory and 
observations is better in the turbulent exit-boundary-layer case than in the laminar 
case. This can be explained as follows. In the present formulation the presence of an 
initial natural shear-layer mode of pairing and its coupling to the low-Strouhal-number 
components are not considered. As will be discussed in $4, if the jet is excited at a 
moderate Strouhal number the amplification of the corresponding subharmonic is 
dependent on its initial level. The presence of an initial natural shear-layer mode of 
pairing alters the initial level of several subharmonics, including the subharmonic that 
will interact downstream as the first subharmonic of the moderate-Strouhal-number 
forced fundamental (see figures 2 f , g ) .  Thus the presence of an initial natural 
shear-layer mode can thus alter the subharmonic’s amplification when the jet is 
excited at moderate Strouhal numbers. In the laminar exit-boundary-layer case 
(figure 4) the observations indicate the presence of an initial natural shear-layer mode. 
Therefore the comparison between theory and observations are less satisfactory. In 
the turbulent exit-boundary-layer case (figure 5 )  the observations show that the 
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initial natural shear-layer mode is removed. Therefore the agreement between theory 
and observations is more satisfactory in the turbulent exit-boundary-layer case than 
in the laminar case. 

Zaman & Hussain (1980) adopted the view that for a circular jet rolled-up vortex 
rings undergo pairing under two distinctive conditions of excitation : the ‘ shear-layer 
mode’, and the ‘jet-column mode’. The shear-layer mode is the one similar to that 
of the plane mixing layer, and is observed for the circular jet when the excitation 
Strouhal number based on the exit momentum thickness was about 0.012 and the 
exit boundary layer was laminar. It involves pairing of the near-exit thin vortex rings. 
Zaman & Hussain defined the jet-column mode as the one involving pairing of the 
thick vortex rings further downstream. It is observed for both laminar and turbulent 
exit boundary layers when the excitation Strouhal number based on diameter is about 
0.85. They concluded that the jet-column mode. of pairing can form independently 
of the shear-layer mode, or as a result from evolution of the shear-layer mode, or when 
the jet is excited directly in the jet-column mode. The predicted growth of the first 
subharmonic a t  the excitation-Strouhal-number range St = 0.6-1 .O, shown in 
figures 2 (c-e), without accounting for the presence of an initial shear-layer mode is in 
agreement with Zaman & Hussain’s conclusion that the jet-column mode can occur 
independently of the shear-layer mode. On the other hand, figure 2 shows that the 
calculated development of the fundamental and its subharmonics indicates that there 
is a continuum of response behaviour as the excitation Strouhal number is increased. 
The particularly pronounced amplification of the first subharmonic when the jet is 
excited a t  fundamental Strouhal number St = 0.8 is due to the fact that the 
subharmonic’s amplification is due to both the mean-flow instability mechanism and 
the fundamental-subharmonic interaction mechanism. It is known that the most- 
preferred frequency associated with the mean-flow profile of a circular jet is of 
Strouhal number about 0.4 (see e.g. Gutmark & Ho 1983). When the jet is excited at 
a fundamental Strouhal number of 0.8 the corresponding first subharmonic has a 
Strouhal number of 0.4, which is the ‘preferred’ Strouhal number of the jet. 
Therefore its amplification is particularly pronounced. Since pairing is viewed here 
as the subharmonic amplification, the particularly pronounced amplification of the 
subharmonic at  the jet-column mode can thus be attributed to the instability of the 
mean-flow profile in addition to its interaction with the forced fundamental. 

4. The effect of excitation level 
In $3  the nonlinear interaction between the fundamental and subharmonic was 

found to result in amplifying the subharmonic. Altering the development of the 
fundamental through excitation can thus result in altering the interaction process. 
The effect of the forcing level on the development of the fundamental and subharmonic 
is examined here by varying the initial level of 1 A 12, while keeping the other initial 
conditions of (5) fixed at  8, = 0.003d, u’ = 0.3% and IBIt = At St = 0.8 the 
growth of the forced fundamental and its first subharmonic is shown in figure 6 for 
several excitation levels. Figure 6 ( a )  shows that the peak of the fundamental 
increases nonlinearly with the excitation level, but its growth rate is reduced. The 
fundamental is saturated at I A 1: = 0.01, corresponding to an exit forced velocity of 
about 10 Yo U,. The peak of the fundamental moves closer to the nozzle exit and its 
streamwise lifespan is reduced as the excitation level increases. Since the initial level 
of the subharmonic is fixed at I B 1; = for all the excitation levels considered, the 
change in the growth rate of the subharmonic (shown in figure 6b) is mainly due to 
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the change in the fundamental’s level. For low level of excitation at I A 1; = the 
subharmonic’s growth is dominated by its interaction with the mean flow, 
and is thus mainly due to the mean-flow instability mechanism. As the excitation level 
increases, energy is pumped from the fundamental to the subharmonic, through the 
IAI IBIZIww term. This increases the subharmonic’s initial growth rate. The sub- 
harmonic peak moves closer to the nozzle exit with increasing excitation level, as 
observed by Laufer & Yen (1983). As I A 1; increases to 0.01, the subharmonic peak 
level also increases. But for IA I f  = 0.1, although the initial growth rate of the 
subharmonic is increased, its peak is considerably reduced. This is a result of the 
excessive drain of the mean-flow energy by the fundamental, and hence less energy 
is available for the subharmonic. Thus there is an optimum excitation level that will 
produce maximum subharmonic amplification, which is consistent with Monkewitz’s 
(1982) conclusion for a two-dimensional shear layer. 

Figure 6 (b) also clarifies the mechanism of the subharmonic’s growth resulting from 
the fundamental versus the one resulting from the mean-flow instability. By taking 
the case of I A 1; = so as to correspond to negligible fundamental-subharmonic 
interactions, figure 6 (b) shows that the subharmonic peak corresponds to about 
4 = 1.8 % Ue, while for strong fundamental-subharmonic interactions, as in 
I A 1; = 0.01, the subharmonic peak increases considerably to about .ii = 10 % U,. This 
indicates the strong subharmonic amplification mechanism resulting from the 
finite-amplitude growth of the fundamental. Figures 6 (a, b) also show that the peaks 
of the fundamental and subharmonic move closer to the jet exit with increasing 
excitation level, as in Laufer & Yen’s (1983) observation. Recalling that pairing is 
viewed here as the subharmonic’s amplification, one can conclude from figure 6 that 
the location of pairing also moves closer to the jet exit with increasing excitation level. 
Figure 6 also shows that weak vortex pairing can occur at the nominally unexcited 
conditions of I AI; = and that the vortex pairing is more pronounced with 
increasing excitation level. This is in qualitative agreement with Acton’s (1980) 
results. Acton modelled the large eddies in an axisymmetric jet using an inviscid 
discrete-vortex model. For St = 0.5 her results showed that as the forcing level was 
increased the large-eddy formation was very regular and there was an immediate 
big-eddy structure at the forcing wavelength. Figure 6 also shows that for excessive 
forcing levels as I A 1; = 0.1 (corresponding to a forcing frequency of about 30 % V,) 
the vortex pairing can be suppressed as in Reynolds t Bouchard’s (1981) experiment. 
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To examine the role of the nonlinear fundamental-subharmonic interactions on the 
fundamental, the development of the fundamental and subharmonic is shown in 
figure 7 for several initial levels of the first subharmonic while keeping the initial level 
of the fundamental h e d  at I A 1: = The excitation Strouhal number is 0.8, 
8, = 0.003d and u’ = 0.3 y-, U, at z/d = 0. The subharmonic’s initial level was varied 
from a negligible level of I B 1: = Figure 7 
shows that the initial growth of the fundamental is independent of the subharmonic, 
but its decay rate increases rapidly with increasing level of the subharmonic. The 
fundamental-subharmonic interaction is thus significant to the fundamental only in 
its decay stage. Equation 5 (b) shows that the role of the fundamental-subharmonic 
interaction on the development of the fundamental is important only when I B Iz//1 A I 
is roughly of order one, and this is true only at later downstream stages where I B I* 
is large enough. Figure 7 also shows that the peaks of the fundamental and 
subharmonic move closer to the jet exit with increasing initial level of the 
subharmonic. Hence the location of pairing moves closer to the nozzle exit 
with increasing initial level of the subharmonic. Thus the location and the strength 
of the vortex pairing are also dependent on the initial level of the subharmonic. In  an 
experimental facility this initial level of the subharmonic is dependent on the 
background disturbances. These disturbances change the initial subharmonic’s level 
and its subsequent pairing with the fundamental, and can thus explain the observed 
irregularity or jitter in vortex pairing. 

Another means of isolating the fundamental-subharmonic interaction mechanism 
from the mean-flow instability mechanism is to artificially decouple the 
growth of the fundamental from that of the subharmonic. This can be done by setting 
the fundamental-subharmonic interaction integral I ,  to zero in (5). Thus the 
fundamental and subharmonics interact simultaneously with the mean flow and the 
background turbulence, but not directly with each other. The simultaneous presence 
of the fundamental and subharmonic still indirectly affects the growth of each of them 
through their individual interactions with the mean flow and with the background 
turbulence. Thus a decoupled case corresponds to the simultaneous presence of the 
coherent components under artificially non-pairing conditions. The growths of the 
fundamental and subharmonic in the pairing and non-pairing cases are shown in figure 8 
for St = 0.8 and initial conditions of IAI: = 0.001, IBI: = 8, = 0.003d and 
u’ = 0.003 U,. The figure clearly indicates that the fundamental-subharmonic 

to a moderate level of I B 1: = 
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FIQURE 8. Effect of the fundamental-subharmonic interaction on the development of the 
fundamental and subharmonic at St = 0.8, I A If = I B,  1; = lo-’: - , fundamental- 
subharmonic interaction included; - - - -, decoupled. 

interaction mechanism results in acceleration of the decay of the fundamental and in 
enhancement of the amplification of the subharmonic. The peak energy of the 
subharmonic, with the fundamental-subharmonic interaction taken into account, is 
about two orders of magnitude greater than its peak due to the mean-flow instability 
mechanism alone. The figure also shows that the fundamental-subharmonic inter- 
action mechanism is much more pronounced for the subharmonic than for the funda- 
mental. This can be explained through (5),  which shows that the relative significance 
of the fundamental-subharmonic interaction term is proportional to I B 12//1 A I for the 
fundamental and to IAl for the subharmonic. Since I B J  is initially 
much smaller than 1 A 1, the effect of the fundamental-subharmonic interaction is less 
pronounced for the fundamental than for the subharmonic. 

The effect of forcing level at a high Strouhal number of St = 4.8, corresponding to 
St, = 0.0144, is shown in figure 9. The initial conditions are Bo = 0.003, u’ = 0.003Ue, 
I B, l 2  = For 
all forcing levels considered, the figure shows the amplification of four subharmonics. 
This can be interpreted as the formation of four vortex pairings. The figure shows 
that the growth rate of the fundamental decreases with increasing excitation level. 
The fundamental saturates as the excitation level increases to 1 A 1; = This is 
in accordance with Laufer 8z Zhang’s (1983) experiment, in which a jet is forced close 
to the natural instability frequency at low forcing level. They found that the peak 
of the fundamental remains relatively constant with increasing the excitation level. 
The figure also shows that, as the excitation level increases, the location of the 
fundamental’s peak moves closer to the jet exit, which is consistent with Freymuth’s 
(1966) and Laufer & Yen’s (1983) measurements. Figure 9 also shows that the levels 
of the subharmonic slightly increase with increasing initial level of the fundamental. 
The peaks of the subharmonics and hence the location of pairing, move closer to the 
jet exit. For St = 2.0 Acton’s (1980) results showed that with increasing the forcing 
level there is a much stronger response, and the large eddy disappeared within one 
diameter. Figure 9 also shows that the energy cascades from the fundamental to the 
subsequent harmonics. This effect is more pronounced at  the first subharmonic, and 
diminishes at the higher-order subharmonics. As the initial energy level of the 
fundamental increases from to the peak energy of the first subharmonic 

and the forcing level is varied from I A 1; = to I A 1; = 
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increaaes by a factor of six, while the peak energy of the fourth subharmonic increases 
by only a factor of three. 

Figure 9 also explains the link between the ‘ shear-layer mode ’ and the ‘ jet-column 
mode’ of pairing. In  figure 7 the vortex pairing at St = 0.8, typical of the jet-column 
mode, was found to be dependent on the initial level of its first subharmonic, which 
has a Strouhal number of 0.4. Considering the shear-layer mode at St = 4.8 (figure 9) 
the fourth subharmonic (8, = 0.3) can be taken as representative of the first 
subharmonic of the jet-column mode at Strouhal number 0.4. Figure 9 shows that 
the level of this subharmonic S, slightly increases in the initial region of the jet as 
a result of excitation at the shear-layer mode. If the initial level of the subharmonic 
is increased, its subsequent downstream pairing with the fundamental in the 
jet-column mode will also be enhanced. Thus, although the jet-column mode is not 
necessarily a consequence of the shear-layer mode, the two modes are inextricably 
coupled. 

5. The effect of the initial phase difference between fundamental and 
subharmonic 

subharmonic is governed by I,,, defined in (6), which can be written as 
Equation ( 5 )  shows that the nonlinear interaction between fundamental and 

(7) 

where I I,, I and y are respectively the magnitude and phase of Ifs,  and I f s  is equal 
to I,, at p = 0, where /? is defined by (6) as 

I,, = 2 I Ifs I co5 (r+/?L 

/? = PO + jz [a,, n - l ( t )  -2ar, ~ ( E ) I  d ~ *  
0 

The real and imaginary parts of I f s  were shown in figure 1 .  The effective wave-wave 
interaction term is thus a combination of both the real and imaginary parts of Ifs, 
depending on /?. For B = 0 and x ,  only the real part of I contributes to I,, and 
the sign of I,, reverses when /? changes from 0 to 7c. Similarly, for /? = ;t. and jx, 
only the imaginary part of I f ,  contributes to the wave-wave interaction process, with 
the sign reversing between /? = ?jx and ix. Since /? is dependent on Po, and noting that 
in (6) the wavenumber is about half a,,,-,, the choice of Po considerably 
influences the development of the coherent components. In $53 and 4, Po was chosen 
as the value that produces maximum subharmonic amplification. To study the effect 
of Po on the interaction process, the developments of the first subharmonic and the 
fundamental axial velocity components, at several values of/?,, are shown in figures 10 
and 11 for St = 0.8 and 2.4 respectively. The initial conditions for the solution of the 
nonlinear equations (5 )  in figures 10 and 1 1  are taken as 0, = 0.003d, u’ = 0.3 % U,, 
Cf = 3 % U,  and iis = 0.1 % U,. In order to isolate the phase effect, only the first sub- 
harmonic of the fundamental is considered in the calculations of figures 10 and 11. 
The development of each component ir. the decoupled case where the fundamental- 
subharmonic interaction is neglected is also shown as dotted lines in the figures. Both 
figures lO(a) and 1 1  ( a )  indicate that the initial growth of the fundamental and its 
peak are independent of Po. During the decay stage of the fundamental, figures l,O(a) 
and 11 (a)  show that Po has a pronounced effect on accelerating the decay of the 
fundamental. This damping effect is proportional to the subharmonic’s amplification 
shown in figures 10(b)  and 11 (b), and is due to the extraction of the fundamental’s 
energy for the growth of the subharmonic. 

ff 
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FIGURE 10. Effect of the initial phase difference Po on the growth of the fundamental and 
subharmonic at St = 0.8, ”2f. = 3 % U, at x = 0: (a) fundamental’s centreline axial velocity com- 
ponent; (b)  first subharmonic centreline axial velocity component. 

Both figures 10(b) and 11 (b) show that the phase difference Po has a pronounced 
effect on the growth of the subharmonic. Close to the nozzle exit, at either St = 0.8 
or 2.4, the subharmonic’s initial growth rate is enhanced if Po is close to R ,  i.e. out 
of phase. The subsequent downstream effect of Po on the development of the 
subharmonic at  St = 0.8 is different from that at St = 2.4. For St = 2.4 the streamwise 
lifespan of the subharmonic is short. Thus an initially higher amplification rate results 
in subsequently higher peak, and for high Strouhal numbers the subharmonic peak 
is maximum, as is the initial growth rate, when Po = 0. For moderate Strouhal 
numbers as in St = 0.8, the subharmonic’s streamwise lifespan is much longer. As a 
result of the initially higher growth rate the subharmonic (8, = 0.4) at Po = 0 reaches 
its peak sooner and drains more energy from the mean flow. Consequently, less 
mean-flow energy is available for its subsequent downstream growth along the jet. 
Thus, though the initial growth rate of the subharmonic is maximum when the two 
waves are in phase, the subsequent subharmonic peak is maximum when Po = in for 
St = 0.8. 
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FIQURE 11.  Effect of the initial phase difference Po on the growth of the fundamental and 
subharmonic at St = 2.4, iif = 3 yo U, at x = 0. 

The initial region of a round jet close to the nozzle exit is similar to a two-dimensional 
shear layer. Therefore some of the features obtained in figures 10 and 11 can be 
qualitatively compared with those of the two-dimensional shear layer. Zhang et al. 
(1984) forced a mixing layer at both the fundamental and subharmonic frequencies. 
The amplification rates of the fundamental were found to be weakly dependent on 
bo as obtained here in figures iO(a) and 11 (a). The measured subharmonic’s growth 
rates were found to decrease by as much as 30 % when Po was varied between 0 and A, 

as the present theory has shown in figure 11 (b). The effect of the phase difference 
on the growth of the subharmonic can also be seen in the numerical results of Patnaik 
Sherman & Corcos (1976), Riley & Metcalfe (1980) and Corcos & Lin (1984) for the 
case of a stratified mixing layer. Their results showed the pairing or the shedding 
interaction to be dependent on the phase difference. 

With the role of the initial phase difference on the growth of the subharmonic now 
established, one can conclude that the jet instability acts as an amplifier not only 
with respect to selective frequencies, but also with respect to selective phase 
differences between fundamental and subharmonic. In natural uncontrolled con- 
ditions, several subharmonic components at a given frequency can exist with several 
random phase differences with respect to the fundamental. The mean flow acts as 
a first amplifier that will amplify or suppress the subharmonic, depending on its 
frequency. The fundamental instability wave associated with the mean-flow profile 
then acts as a second amplifier that will amplify or reduce the subharmonic, 
depending on its arbitrary initial phase difference with respect to the fundamental. 
For a given frequency the most-amplified subharmonic is thus the one with the proper 
phase difference. This can be the cause of the observed jitter in the location or strength 
of pairing. If the uncontrolled subharmonic component at the nozzle exit is at the 
proper phase difference, it will produce a strong pairing at some downstream location. 
But, if the phase difference is not the optimum one, the strength of pairing will be 
reduced and its location will be altered. 
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I 
FIQURE 12. Energy-exchange terms of the fundamental a t  St = 0.8 

and excitation level iZf = 3 yo U,. 

6. The energy-transfer mechanism for vortex pairing 
In order to understand the pairing process, the energy transfer responsible for the 

development of the fundamental and its subharmonic is examined here for St = 0.8 
and 4.8. The energy exchanges at St = 0.8 are presented in figures 12 and 13 for 
excitation conditions iif = 3% U,, u’ = 0.3 % U,, 4, = 0.1 yo U, and Bo = 0.003d. 

Figure 12 shows the production of the fundamental component by the mean flow 
IA12rRs, the turbulence damping IA12Elwt and the energy drained from the 
fundamental to the subharmonic I A I I B, l 2  Iww. In the initial region of the jet the 
production of the fundamental by the mean flow is the dominant term, and therefore 
the fundamental grows. But for x > 1.5d three mechanisms contribute to the decay 
of the fundamental. 

(i) Turbulence damping (I A I2 EIwt), where the random turbulence intensity has now 
increased enough to play an important role in the decay of the fundamental. For a 
mixing layer between two streams, Browand & Latigo (1979) observed that when the 
initial boundary layer was turbulent, the shear layer’s growth rate was found to be 
initially less than when the initial boundary layer was laminar. They interpreted this 
reduction in the growth rate as a result of the coherent structure damping through 
the introduced turbulence, which is in accordance with the present turbulence 
damping mechanism. 

(ii) The fundamental-subharmonic interaction mechanism (I A I I B, I2 I,,), through 
which the subharmonic grows by absorbing energy from the fundamental. 

(iii) The production of the fundamental by the mean$ow, which becomes negative 
at some downstream stations, indicating energy transfer from the coherent component 
back to the mean flow. The linear-stability theory predicts a damped solution for this 
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FIGURE 13. Energy-exchange terms of the first subharmonic at St = 0.8 
and excitation level Cf = 3 yo U,. 

Strouhal number at large values of 8. In the present analysis the sign of the 
production of coherent structure is determined by 

TRs is calculated here based on the linear-stability solution, and therefore is negative 
when the linear solution is damped, which is physically consistent. Since the mean 
shear aU/ar does not change sign along the jet, negative production is here a result 
of negative coherent stresses. Browand (1980) was the first to comment on the 
significance of these negative Reynolds stresses and their relation to the pairing 
process. These negative Reynolds stresses have also been observed by Oster & 
Wygnanski (1982) for the two-dimensional shear layer and by Zaman & Hussain 
(1980) for the round jet. For a two-dimensional shear layer, Browand & Ho (1983) 
interpret the negative Reynolds stress as a result of the tilt of the vorticity 
distribution. If the tilt is upstream on the low-speed side, the resulting momentum 
flux is away from the mixing layer. Consequently the turbulence energy is decreased. 
For the unexcited shear layer the tilt is usually downstream on the low-speed side, 
and therefore negative Reynolds stress is unlikely to be produced. If the shear layer 
is forced the vortex structure is controlled, and the tilt can result in negative Reynolds 
stresses. 

The energy-exchange terms for the subharmonic are shown in figure 13 with the 
same ordinate scale as that for the fundamental in figure 12. The figure shows that 
the subharmonic energy terms are initially negligible with respect to those of the 
fundamental for x / d  < 1.5. Therefore these terms have little effect on the initial 
growth of the fundamental. However, for x / d  > 1.5 the figure shows that the 
subharmonic's energy interactions are of the same order as that of the fundamental. 
For x / d  > 1.5 the production of the subharmonic by the fundamental is of the same 
order as that of the subharmonic's production by the mean flow. Thus, the 
fundamental amplifies the subharmonic in two ways: first it absorbs energy from the 
mean flow in the initial region of the jet, and subsequently, as it decays, it  pumps 
this energy to the subharmonic through I B, l2 I A I Iww. Secondly, the enhancement 
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of the subharmonic’s level through the fundamental-subharmonic interaction acts 
as a catalyst for enhancing the direct production of the subharmonic by the mean 
flow (I B l 2  I,,). The two mechanisms combined result in considerable amplification 
of the subharmonic. The subharmonic subsequently decays basically through the 
turbulence-damping mechanism. 

At St = 4.8 the energy-exchange terms are shown in figure 14 for the fundamental 
and its subharmonics. The initial conditions are 8, = 0.003d, u’ = 0.3 yo U,  and the 
initial longitudinal velocities of the subharmonics are 0.1 % U,. The initial longitudinal 
velocity of the fundamental is 1 Yo U,. Figure 14 (a) shows that the fundamental grows 
as a result of its production by the mean flow and decays as a result of generating 
its first subharmonic and as a result of its mean-flow production being negative. The 
effect of random turbulence on damping the fundamental is negligible with respect 
to the two former damping mechanisms. The first subharmonic initially grows as a 
result of the energy gained from the mean flow and from the fundamental, as 
figure 14 ( b )  indicates. The first subharmonic subsequently decays through the three 
damping mechanisms : mean-flow negative production, generating the subsequent 
subharmonic, and damping through the random turbulence. The subsequent sub- 
harmonics grow through the same mechanisms as figures 14 (c, d) indicate. However, 
while the ‘negative production’ is a significant damping mechanism for the funda- 
mental and first subharmonic, the turbulence damping becomes the dominant mecha- 
nism for the decay of the higher subharmonic, as in the fourth subharmonic shown 
in figure 14(d). 

7. The effect of the fundamental-subharmonic interactions on the random 
turbulence 

I n  the present model the coherent components control the development of the 
random turbulence in two ways. First, they absorb energy from the mean flow and 
pump i t  to the random turbulence through the coherent-structure-random-turbulence 
interaction terms. Secondly, by altering the growth rate of the mean flow, the energy 
available to the random turbulence through direct mean-flow production I;, E is also 
altered. The first mechanism always tends to enhance the random turbulence. I n  the 
second mechanism Ik,(8) is a decreasing function of 8, thus the higher spreading rate 
produced by the coherent structure decreases I&,(8), which represents the potential 
for the turbulence production by the mean flow. But the actual production EIk, is 
a function of E ,  and therefore depends on the initial conditions of E,, I A I:, I B I:, 8, 
and the Strouhal number. Thus, in principle, the second mechanism can have either 
an amplification or suppression effect on the random turbulence. The fundamental- 
subharmonic interaction is a third indirect mechanism which controls the development 
of the random turbulence through altering the above two mechanisms. Controlling 
vortex pairing through excitation can thus lead to  either an amplification or 
suppression of the random turbulence. 

For the unexcited case the initial level of coherent structure is weak, and the 
random-turbulence production is mainly due to the mean flow. Figure 15 shows the 
predicted distribution of the centreline axial random-turbulence root-mean-square 
value of u’ in comparison with the measurement of Drubka (1981) and Husain & 
Hussain (1980). The initial conditions for the solution of ( 5 )  are taken from the 
corresponding experiment in each case. The two figures show good agreement 
between theory and experiment for the initial region of the jet. However, farther 
downstream for x/d > 7, the present theory tends to  underestimate the turbulence 
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FIGURE 15. Calculated random turbulence centreline axial velocity component in comparison with 
experimental data: (a) comparison with Drubka’s (1980) data; (b )  comparison with Husain & 
Hussain’s (1980) data. 

intensity, which can be attributed to two factors. First, the present turbulence model 
relies on a radial shape distribution for the turbulent Reynolds stresses, with a peak 
at r = @. This is true in the initial region of the jet. but farther downstream this peak 
is observed to move toward the centreline. Thus the present turbulence model may 
not be reliable farther downstream in the fully developed region. Secondly, the 
phase-averaged experimental results of Drubka (1981) and Husain & Hussain (1980) 
were not high-pass filtered to eliminate the low-frequency components. Their random 
components resulting from phase averaging may contain low-frequency variability, 
which is not included in the calculated random components. 

7. I .  Turbulence enhancement due to excitation 
The observations of Crow & Champagne (1971), Chan (1974), Moore (1977), Zaman 
& Hussain (1980) and Kibens (1980) showed that excitation at moderate Strouhal 
numbers produces amplification of the fluctuating components. In order to examine 
the role of excitation on enhancing the random turbulence, the centreline development 
of the axial random turbulence velocity component is shown in figure 16 for the 
unforced case, and for 3 yo forcing at  St = 0.8. Note that only the random component 
of the fluctuating axial velocity is shown in the figure. The total fluctuating 
component, which is usually the one measured in experiment, consists of the random 
turbulence as well as the fundamental and subharmonic coherent components, 

which is greater than u’ alone. Figure 16 shows that the excitation enhances the jet 
turbulence in accordance with the above observations. The centreline turbulence 
intensity reaches a peak around x / d  = 8 for the unexcited case. Under excitation, 
this peak increases and moves upstream to x / d  = 6, as in the observations of Hussain 
& Thompson (1980), Hasan & Hussain (1980) and Favre-Marinet t Binder (1979). 

The turbulence productions by the mean flow EILS and by the two coherent 
components I A l 2  EI,, and I B, l2 EI,, are shown in figure 17 for the same initial 
conditions as in figure 16. In the unforced case the figure shows that the turbulence 
production is mainly due to the mean flow. In the forced case the figure shows some 
turbulence production by the fundamental, and significant turbulence production by 
the subharmonic. The subharmonic streamwise lifespan is much larger than that of 

14-2 
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FIQURE 16. Random turbulence enhancement due to excitation at St = 0.8 
and excitation level Cf = 3 % U, : - , excited ; - - -, unexcited. 
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FIQIJRE 18. Random-turbulence suppression due to excitation at St = 2.4; 
excitation level 1 % U, : - , excited; - - - -, unexcited. 

the fundamental, and therefore it is more efficient in transferring energy to the 
random turbulence. As a result of excitation, the turbulence production by the mean 
flow EILS first decreases owing to the saturation of the meanflow by the fundamental 
component. But farther downstream the turbulence production by the mean flow in 
the excited case exceeds that of the unexcited case through increasing E, which results 
from the coherent-structumrandom-turbulence interactions. Once the two coherent 
components have decayed, the turbulence production is governed by the mean flow 
alone, and the two governing mechanisms are EI;, and the viscous dissipation ,?i$ I,. 

Since pairing is viewed here as a consequence of the fundamental-subharmonic 
interaction, the role of pairing on the random turbulence enhancement can thus be 
divided into the following mechanisms : (i) through the fundamental, which absorbs 
energy from the mean flow as it grows, and subsequently pumps this energy as it  
decays to the random turbulence; (ii) the nonlinear growth of the fundamental results 
in amplification of the subharmonic, which in turn pumps significant energy from the 
mean flow to the random turbulence; (iii) as a result of these mechanisms, the 
turbulence intensity and hence its Reynolds stresses increase. This increases the direct 
production of turbulence by the mean flow. This mechanism is also suggested by Ho 
& Huang (1982), who speculated that the large strain rates resulting from the 
coalescence of the coherent structures are responsible for the generation of small-scale 
eddies. Browand & Weidman (1976) have also found that the pairing process was 
responsible for the production of Reynolds stresses. 

7.2. Turbulence suppression due to excitation 
At higher Strouhal numbers based on diameter several experimental observations 
have indicated that the turbulence can be suppressed. Vlasov & Ginevsky (1974) 
observed suppression of turbulence intensities in a circular jet under excitation at 
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FIGURE 19. Productions of random turbulence due to excitation at St = 2.4; 
excitation level 1 % U,. - , excited ; - - - -, unexcited. 

St = 2.75 and that there is an optimum level of excitation for which the suppression 
is an optimum. Zaman & Hussain (1981) have also shown that suppression occurs 
for the St-range 1.2-2.4 and maximum suppression occurs when St, = 0.017. In order 
to examine the mechanism of turbulence suppression in the present analysis, the 
random-turbulence axial velocity component along the jet centreline is shown in 
figure 18 for the unexcited case and for the case of excitation at  St = 2.4. The initial 
conditions are B,, = 0.025d, u’ = 0.3 %, the subharmonic initial velocity level is 0.01 % 
U,  and the forcing level of Gf is 3 % U,. The figure shows some turbulence suppression, 
as in the observations of Vlasov & Ginevsky (1974), Petersen, Kaplan & Laufer (1974) 
and Zaman & Hussain (1981). However, the computed turbulence suppression is 
much less than the observed one. Figure 18 also shows that the location of the peak 
around x l d  x 8 moves downstream as a result of suppression, which the observations 
of Zaman & Hussain (1981) have also indicated. 

The turbulence productions by the mean flow and by the coherent components are 
shown in figure 19, for the same conditions as in figure 18. The figure shows that the 
dominant production term for both the excited and the unexcited cases is the 
mean-flow production, which is reduced as a result of excitation. The turbulence 
suppression can thus be explained as follows. The instability wave at a high Strouhal 
number has a much shorter streamwise lifespan as compared with the low-Strouhal- 
number instability waves. Therefore the former is much less efficient than the latter 
in pumping energy from the mean flow to the background turbulence. Excitation at 
high Strouhal numbers, e.g. St x 2.4, raises the level of the corresponding high- 
Strouhal number short instability wave and thus increases its energy drain from the 
mean flow. As in Ho & Huang’s (1982) results, this excessive initial energy drain from 
the mean flow causes the momentum thickness to increase, and consequently the 
mean shear strain aU/ar decreases. Therefore less mean-flow energy is available for 
the direct mean-flow production of the random turbulence. Thus, as a result of the 
loss of availability of mean-flow energy, the random turbulence is suppressed when 
the jet is excited at high Strouhal numbers. 
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8. Conclusions 
The energy-integral technique was used to study the interactions between a 

fundamental instability component and its subharmonics in a turbulent round jet. 
Because of the assumed radial shapes and the finite number of wave components 
considered, the method is only approximate. Vortex pairing is viewed as the 
subharmonic’s amplification resulting from its interaction with the fundamental. 
Excitation a t  low to moderate Strouhal numbers was found to  result in amplifying 
the first subharmonic, which was found t o  be most pronounced if the excitation 
Strouhal number is in the range of 0.6-1.0. Excitation at higher Strouhal numbers 
was found to  result in the amplification of several subharmonics. 

The strength of the fundamental-subharmonic interactions, as measured by the 
subharmonic’s amplification, was found to increase nonlinearly with increasing initial 
level of the forced fundamental. Beyond a certain level further increase in the initial 
level of the fundamental result in suppression of the amplification of the subharmonic 
and hence the vortex-pairing process. The fundamental’s peak and the subharmonic’s 
peak were found to  move closer t o  the nozzle exit with increasing excitation Strouhal 
number. The location and the level of the fundamental’s peak were found to  be 
dependent on the uncontrolled initial level of the subharmonic and on its initial phase 
difference with respect to  the fundamental. This can explain the observed irregularity 
or jitter in pairing. 

A study of the energy exchanges between the different flow components along the 
jet indicated that the importance of each of the mechanisms governing the growth 
and decay of coherent components under excitation depends on the Strouhal number 
and on the streamwise location. At moderate Strouhal numbers the fundamental’s 
production by the mean flow is the dominant mechanism close to the nozzle exit. The 
fundamental subsequently decays through three equally significant mechanisms : 
turbulence damping, generation of its first subharmonic, and negative production in 
which energy is transferred from the coherent component to the mean flow. The 
fundamental amplifies the subharmonic through two mechanisms. First, i t  pumps 
energy from the mean flow to the subharmonic. Secondly, the enhanced level of the 
subharmonic acts as a catalyst that  increases the direct mean-flow production of the 
subharmonic. The first subharmonic subsequently decays mainly through turbulence 
damping. At high Strouhal numbers the fundamental grows by absorbing energy from 
the mean flow and decays through negative production and through generating its 
first subharmonic. The first subharmonic grows as a result of its production by both 
the mean flow and by the fundamental, and decays as a result of its negative 
production and as a result of generating the second subharmonic. The subsequent 
subharmonics behave similarly, but the significance of the negative-production decay 
mechanism diminishes as the Strouhal number of the subharmonic decreases. The low- 
Strouhal-number subharmonics decay basically through turbulence damping. 

As a result of the energy transfer from the coherent components t o  the random 
turbulence, the turbulence intensity is enhanced when the jet is excited a t  moderate 
Strouhal numbers. If the excitation Strouhal number is high, the streamwise lifespans 
of the coherent components are short, and therefore they pump negligible energy to  
the random turbulence. Thus, as a result of initial mean-flow energy drain for the 
growth of the coherent components, less mean-flow energy is available for the 
production of turbulence. Consequently the turbulence is suppressed when the jet is 
excited at high Strouhal numbers. The close agreement between theory and obser- 
vations suggests that a nonlinear fundamental-subharmonic interaction mechanism 
can explain the observed vortex-pairing phenomena. 
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